Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Res. Biomed. Eng. (Online) ; 34(1): 37-44, Jan.-Mar. 2018. graf
Article in English | LILACS | ID: biblio-896206

ABSTRACT

Abstract Introduction Polymer optical fibers (POF) are lightweight, present high elastic strain limits, fracture toughness, flexibility in bend, and are not influenced by electromagnetic fields. These characteristics enable the application of POF as curvature sensor and can overcome the limitations of the conventional technologies, especially for wearable and soft robotics devices. Nevertheless, POF based curvature sensors can suffer from environmental and light source power deviations. This paper presents a compensation technique for the environmental and light source power deviations in a POF curvature sensor. Methods The curvature sensor was submitted to variations of temperature, humidity and light source power to characterize the sensor response and evaluate the proposed compensation technique. In addition, tests with the simultaneous variation of the angle and light source power variation were performed. Results Results show that temperature and humidity effects do not lead to significative errors on the sensor measurement for wearable devices application, where a hardware-based compact and portable compensation technique of the light source deviation is applied. Moreover, the sensor with the compensation technique developed is compared with a potentiometer for dynamic measurements and the root-mean-square error of about 1° is obtained, which is lower than sensors based on similar operation principle presented in the literature and some commercially available devices. Conclusions The compensation technique proposed was able to compensate power deviations applied and resulted in a sensor with low errors with the additional advantages of compactness and low-cost, which enable its application as wearable sensors and on the instrumentation of wearable robots.

2.
Rev. bras. eng. biomed ; 30(3): 220-231, Sept. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-723259

ABSTRACT

INTRODUCTION:This study investigates a gait research protocol to assess the impact of a walker model with forearm supports on the kinematic parameters of the lower limb during locomotion. METHODS: Thirteen healthy participants without any history of gait dysfunction were enrolled in the experimental procedure. Spatiotemporal and kinematic gait parameters were calculated by using wireless inertial sensors and analyzed with Principal Component Analysis (PCA). The PCA method was selected to achieve dimension reduction and evaluate the main effects in gait performance during walker-assisted gait. Additionally, the interaction among the variables included in each Principal Component (PCs) derived from PCA is exposed to expand the understanding of the main differences between walker-assisted and unassisted gait conditions. RESULTS:The results of the statistical analysis identified four PCs that retained 65% of the data variability. These components were associated with spatiotemporal information, knee joint, hip joint and ankle joint motion, respectively. CONCLUSION: Assisted gait by a walker model with forearm supports was characterized by slower gait, shorter steps, larger double support phase and lower body vertical acceleration when compared with normal, unassisted walking.

SELECTION OF CITATIONS
SEARCH DETAIL